728x90

์ „์ฒด ๊ธ€ 93

[Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_4 (ํ•ด์‹œ๋ฒ•)

์ด์ „ ๊ธ€ 2022.11.27 - [Code/Algorithm] - [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_2 (์„ ํ˜• ๊ฒ€์ƒ‰) [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_2 (์„ ํ˜• ๊ฒ€์ƒ‰) 03-2 ์„ ํ˜• ๊ฒ€์ƒ‰ ์„ ํ˜• ๊ฒ€์ƒ‰(linear search) ์ง์„  ๋ชจ์–‘(์„ ํ˜•)์œผ๋กœ ๋Š˜์–ด์„  ๋ฐฐ์—ด์—์„œ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ์šฐ์— ์›ํ•˜๋Š” ํ‚ค๊ฐ’์„ ๊ฐ€์ง„ ์›์†Œ๋ฅผ ์ฐพ์„ ๋•Œ๊นŒ์ง€ ๋งจ ์•ž๋ถ€ํ„ฐ ์Šค์บ”ํ•˜์—ฌ ์ˆœ์„œ๋Œ€๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํ˜• ๊ฒ€์ƒ‰ heejins.tistory.com 2022.11.28 - [Code/Algorithm] - [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_3 (์ด์ง„ ๊ฒ€์ƒ‰) [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_3 (์ด์ง„ ๊ฒ€์ƒ‰) ์ด์ „ ๊ธ€(์„ ํ˜• ๊ฒ€์ƒ‰) 2022.11.27 - [Code/Algorithm] - [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_2 (์„ ํ˜• ๊ฒ€์ƒ‰)..

Code/Algorithm 2022.11.28

[Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_3 (์ด์ง„ ๊ฒ€์ƒ‰)

์ด์ „ ๊ธ€(์„ ํ˜• ๊ฒ€์ƒ‰) 2022.11.27 - [Code/Algorithm] - [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_2 (์„ ํ˜• ๊ฒ€์ƒ‰) [Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_2 (์„ ํ˜• ๊ฒ€์ƒ‰) 03-2 ์„ ํ˜• ๊ฒ€์ƒ‰ ์„ ํ˜• ๊ฒ€์ƒ‰(linear search) ์ง์„  ๋ชจ์–‘(์„ ํ˜•)์œผ๋กœ ๋Š˜์–ด์„  ๋ฐฐ์—ด์—์„œ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ์šฐ์— ์›ํ•˜๋Š” ํ‚ค๊ฐ’์„ ๊ฐ€์ง„ ์›์†Œ๋ฅผ ์ฐพ์„ ๋•Œ๊นŒ์ง€ ๋งจ ์•ž๋ถ€ํ„ฐ ์Šค์บ”ํ•˜์—ฌ ์ˆœ์„œ๋Œ€๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํ˜• ๊ฒ€์ƒ‰ heejins.tistory.com 03-3 ์ด์ง„ ๊ฒ€์ƒ‰ ์ด์ง„ ๊ฒ€์ƒ‰(binary search) ์›์†Œ๊ฐ€ ์˜ค๋ฆ„์ฐจ์ˆœ์ด๋‚˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ์ •๋ ฌ๋œ ๋ฐฐ์—ด์—์„œ ์ข€ ๋” ํšจ์œจ์ ์œผ๋กœ ๊ฒ€์ƒ‰ํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฒ€์ƒ‰ ๋ฒ”์œ„๋Š” ํฐ์ƒ‰ ๋ฐฐ์—ด ์•ˆ์˜ ์›์†Œ์ด๊ณ , ๊ฒ€์ƒ‰์—์„œ ์ œ์™ธ๋˜๋Š” ๋ฒ”์œ„๋Š” ํšŒ์ƒ‰ ๋ฐฐ์—ด ์•ˆ์˜ ์›์†Œ์ž…๋‹ˆ๋‹ค. ์ด์ง„ ๊ฒ€์ƒ‰์„ ํ•œ ๋‹จ๊ณ„์”ฉ ์ง„ํ–‰ํ•  ๋•Œ๋งˆ๋‹ค ๊ฒ€์ƒ‰..

Code/Algorithm 2022.11.28

[Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_2 (์„ ํ˜• ๊ฒ€์ƒ‰)

03-2 ์„ ํ˜• ๊ฒ€์ƒ‰ ์„ ํ˜• ๊ฒ€์ƒ‰(linear search) ์ง์„  ๋ชจ์–‘(์„ ํ˜•)์œผ๋กœ ๋Š˜์–ด์„  ๋ฐฐ์—ด์—์„œ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ์šฐ์— ์›ํ•˜๋Š” ํ‚ค๊ฐ’์„ ๊ฐ€์ง„ ์›์†Œ๋ฅผ ์ฐพ์„ ๋•Œ๊นŒ์ง€ ๋งจ ์•ž๋ถ€ํ„ฐ ์Šค์บ”ํ•˜์—ฌ ์ˆœ์„œ๋Œ€๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํ˜• ๊ฒ€์ƒ‰์˜ ์ข…๋ฃŒ ์กฐ๊ฑด ๊ฒ€์ƒ‰ํ•  ๊ฐ’์„ ์ฐพ์ง€ ๋ชปํ•˜๊ณ  ๋ฐฐ์—ด์˜ ๋งจ ๋์„ ์ง€๋‚˜๊ฐ„ ๊ฒฝ์šฐ ยทยทยท ๊ฒ€์ƒ‰ ์‹คํŒจ ๊ฒ€์ƒ‰ํ•  ๊ฐ’๊ณผ ๊ฐ™์€ ์›์†Œ๋ฅผ ์ฐฟ๋Š” ๊ฒฝ์šฐ ยทยทยท ๊ฒ€์ƒ‰ ์„ฑ๊ณต ๋ฐฐ์—ด a์—์„œ ๊ฒ€์ƒ‰ํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ ์ฝ”๋“œ i = 0 while True: if i == len(a): # ๊ฒ€์ƒ‰ ์‹คํŒจ if a[i] == key: # ๊ฒ€์ƒ‰ ์„ฑ๊ณต(์ฐพ์€ ์›์†Œ์˜ ์ธ๋ฑ์Šค๋Š” i) i+=1 ์„ ํ˜• ๊ฒ€์ƒ‰์˜ ์ข…๋ฃŒ ์กฐ๊ฑด 1 ยทยทยท if i == len(a)๊ฐ€ ์„ฑ๋ฆฝํ•˜๋ฉด ์Šค์บ” ์ข…๋ฃŒ ์„ ํ˜• ๊ฒ€์ƒ‰์˜ ์ข…๋ฃŒ ์กฐ๊ฑด 2 ยทยทยท if a[i] == key๊ฐ€ ์„ฑ๋ฆฝํ•˜๋ฉด ์Šค์บ” ์ข…๋ฃŒ ์‹ค์Šต 3-1 ..

Code/Algorithm 2022.11.27

[Algorithm] ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜_1

03-1 ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ž€? ๊ฒ€์ƒ‰๊ณผ ํ‚ค ๊ตญ์ ์ด ํ•œ๊ตญ์ธ ์‚ฌ๋žŒ์„ ์ฐพ์Šต๋‹ˆ๋‹ค. ๋‚˜์ด๊ฐ€ 21์„ธ ์ด์ƒ 27์„ธ ๋ฏธ๋งŒ์ธ ์‚ฌ๋žŒ์„ ์ฐพ์Šต๋‹ˆ๋‹ค. ์ด๋ฆ„์— '๋ฏผ' ์ž๊ฐ€ ๋“ค์–ด๊ฐ„ ์‚ฌ๋žŒ์„ ์ฐพ์Šต๋‹ˆ๋‹ค. ๋ชจ๋‘ ์–ด๋– ํ•œ ํ•ญ๋ชฉ์— ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์ฃผ๋ชฉํ•˜๋Š” ํ•ญ๋ชฉ์„ ํ‚ค(key)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„ ํ‚ค๋Š” ๋ฐ์ดํ„ฐ์˜ ์ผ๋ถ€์ž…๋‹ˆ๋‹ค. ๊ตญ์ : ํ‚ค๊ฐ’๊ณผ ์ผ์น˜ํ•˜๋„๋ก ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ๋‚˜์ด: ํ‚ค๊ฐ’์˜ ๊ตฌ๊ฐ„์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์ž: ํ‚ค๊ฐ’์— ๊ฐ€๊น๋„๋ก ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰์˜ ์ข…๋ฅ˜ ๋ฐฐ์—ด ๊ฒ€์ƒ‰ ์—ฐ๊ฒฐ ๋ฆฌ์ŠคํŠธ ๊ฒ€์ƒ‰ ์ด์ง„ ๊ฒ€์ƒ‰ ํŠธ๋ฆฌ ๊ฒ€์ƒ‰ ๋ฐฐ์—ด ๊ฒ€์ƒ‰ ์„ ํ˜• ๊ฒ€์ƒ‰: ๋ฌด์ž‘์œ„๋กœ ๋Š˜์–ด๋†“์€ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด์ง„ ๊ฒ€์ƒ‰: ์ผ์ •ํ•œ ๊ทœ์น™์œผ๋กœ ๋Š˜์–ด๋†“์€ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ ์•„์ฃผ ๋น ๋ฅธ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ํ•ด์‹œ๋ฒ•: ์ถ”๊ฐ€ยท์‚ญ์ œ๊ฐ€ ์ž์ฃผ ์ผ์–ด๋‚˜๋Š” ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ ์•„์ฃผ ๋น ๋ฅธ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ•ดํ•ฉ๋‹ˆ๋‹ค. - ์ฒด์ธ๋ฒ•..

Code/Algorithm 2022.11.27

[Algorithm] ๊ธฐ๋ณธ ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋ฐฐ์—ด_2

์ด์ „ ๊ธ€๊ณผ ์ด์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ด์ „ ๊ธ€์„ ๋จผ์ € ๋ณด์‹œ๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค. 2022.11.21 - [Code/Algorithm] - [Algorithm] ๊ธฐ๋ณธ ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋ฐฐ์—ด [Algorithm] ๊ธฐ๋ณธ ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋ฐฐ์—ด_1 02 - 1 ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋ฐฐ์—ด ์‹ค์Šต 2-1 ํ•™์ƒ 5๋ช…์˜ ์‹œํ—˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ํ•ฉ๊ณ„์™€ ํ‰๊ท ์„ ์ถœ๋ ฅํ•˜๊ธฐ # ํ•™์ƒ 5๋ช…์˜ ์‹œํ—˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ํ•ฉ๊ณ„์™€ ํ‰๊ท ์„ ์ถœ๋ ฅํ•˜๊ธฐ print('ํ•™์ƒ ๊ทธ๋ฃน ์ ์ˆ˜์˜ ํ•ฉ๊ณ„์™€ ํ‰๊ท ์„ ๊ตฌํ•ฉ heejins.tistory.com 02 - 1 ๋ฐฐ์—ด์ด๋ž€? ๋ฐฐ์—ด ์›์†Œ์˜ ์ตœ๋Œ“๊ฐ’ ๊ตฌํ•˜๊ธฐ # a์˜ ์›์†Œ๊ฐ€ 3๊ฐœ์ผ ๋•Œ maximum = a[0] if a[1] > maximum: maximum = a[1] if a[2] > maximum: maximum = a[2] # a์˜ ์›์†Œ๊ฐ€ 4๊ฐœ์ผ ๋•Œ m..

Code/Algorithm 2022.11.25

[Deep Learning] ํ”„๋ ˆ์ž„์›Œํฌ ํ™•์žฅ ์ฝ”๋“œ ๊ตฌํ˜„

์ด์ „ deep learning ํด๋ž˜์Šค ์ฝ”๋“œ ๊ตฌํ˜„๊ณผ ์ด์–ด์ง€๋Š” ๋‚ด์šฉ์ด๋ฏ€๋กœ, ์ด์ „ ๊ธ€ ๋จผ์ € ํ™•์ธํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค. https://heejins.tistory.com/36 float: # ๊ฐ ํ–‰(๊ด€์ฐฐ์— ํ•ด๋‹น)์— softmax ํ•จ์ˆ˜ ์ ์šฉ softmax_preds = softmax(self.prediction, axis = 1) # ์†์‹ค๊ฐ’์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๋Š” ๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•ด softmax ํ•จ์ˆ˜์˜ ์ถœ๋ ฅ๊ฐ’ ๋ฒ”์œ„๋ฅผ ์ œํ•œ self.softmax_preds = np.clip(softmax_preds, self.eps, 1 - self.eps) # ์‹ค์ œ ์†์‹ค๊ฐ’ ๊ณ„์‚ฐ ์ˆ˜ํ–‰ softmax_cross_entropy_loss = ( -1.0 * self.target * np.log(self.softmax_preds) - (1.0 - s..

Deep Learning 2022.11.24

[Deep Learning] ๋”ฅ๋Ÿฌ๋‹ ํด๋ž˜์Šค ์ฝ”๋“œ ๊ตฌํ˜„(์—ฐ์‚ฐ, layer, neuralnetwork, ๋ฐฐ์น˜ํ•™์Šต, optimizer)

import numpy as np from numpy import ndarray from typing import * def assert_same_shape(array: ndarray, array_grad: ndarray): assert array.shape == array_grad.shape, \ f""" ๋‘ ndarray์˜ ๋ชจ์–‘์ด ๊ฐ™์•„์•ผ ํ•˜๋Š”๋ฐ, ์ฒซ ๋ฒˆ์งธ ndarray์˜ ๋ชจ์–‘์€ {tuple(array_grad.shape)}์ด๊ณ , ๋‘ ๋ฒˆ์งธ ndarray์˜ ๋ชจ์–‘์€ {typle(array.shape)}์ด๋‹ค. """ return None - ์‹ ๊ฒฝ๋ง ๊ตฌ์„ฑ ์š”์†Œ: ์—ฐ์‚ฐ Operation ํด๋ž˜์Šค class Operation(object): """ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์—ฐ์‚ฐ ์—ญํ• ์„ ํ•˜๋Š” ๊ธฐ๋ฐ˜ ํด๋ž˜์Šค """ def __in..

Deep Learning 2022.11.23

[Machine Learning] SMOTETomek

- SMOTETomek? Combination of over - and under - sampling method SMOTE์˜ ๋ฐฉ๋ฒ•๊ณผ TomekLink๋ฅผ ๋ณตํ•ฉํ•˜์—ฌ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ SMOTE๋กœ over sampling ์ง„ํ–‰ ํ›„ ๊ฒฝ๊ณ„์„ ์— ์žˆ๋Š” major sample์„ ์ œ๊ฑฐ ๋ถ„๋ฅ˜ ๊ฒฝ๊ณ„๋ฉด์„ ๋šœ๋ ทํ•˜๊ฒŒํ•˜์—ฌ ๋ถ„๋ฅ˜๊ฐ€ ์ž˜ ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. - Import import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_classification from imblearn.under_sampling import TomekLinks from imblearn.combine import SMOTETom..

Machine Learning 2022.11.23
728x90