728x90

์ „์ฒด ๊ธ€ 93

[Deep Learning]tensorflow๋กœ Dnn ๋ชจ๋ธ ์Œ“๊ธฐ

- Import & ํ™˜๊ฒฝ์„ค์ • import tensorflow as tf from tensorflow.keras import utils import gc # ์—ฐ์‚ฐ๋ฐฉ์‹ ์„ค์ • # GPU ๋˜๋Š” CPU multi training ๊ฐ€๋Šฅํ•˜๊ฒŒ ์„ค์ • from tensorflow.compat.v1 import ConfigProto # Configproto์˜ session์„ default session์œผ๋กœ ์„ค์ • from tensorflow.compat.vq impofg InteractiveSession config = ConfigProto() # gpu memory 0.1์”ฉ ํ• ๋‹น config.gpu_option.per_process_gpu_memory_fraction = 0.1 session = InteractiveSess..

[Python]for๋ฌธ ์ „์—ญ ๋ณ€์ˆ˜ ์ผ๊ด„ ์ ์šฉ, globals()

for๋ฌธ ์ง„ํ–‰ ์‹œ ์ „์—ญ ๋ณ€์ˆ˜๋ฅผ ์ผ๊ด„๋กœ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ €๋Š” ์ฃผ๋กœ ํŠน์ • ๋ฌธ์ž๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋ณ€์ˆ˜๋“ค๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์„ ๋งŒ๋“ค ๋•Œ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, titanic ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค. from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split, StratifiedKFold import pandas as pd # data load df = pd.read_csv('train.csv') df.head() ์ด์ œ, ์ „์—ญ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ์ €๋Š” A, P, C๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋ณ€์ˆ˜๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ ๋ฐ์ดํ„ฐ..

Code/Python 2022.11.04

[Linux]tar, gz ์••์ถ• ๋ฐ ํ•ด์ œ

1. tar๋กœ ์••์ถ• zip ํ˜•์‹๋„ ๊ฐ€๋Šฅ > tar -cvf 'ํŒŒ์ผ๋ช….tar' 'ํด๋”๊ฒฝ๋กœ' 2. tar ์••์ถ• ํ•ด์ œ zip ํ˜•์‹๋„ ๊ฐ€๋Šฅ > tar -xvf 'ํŒŒ์ผ๋ช….tar' 3. tar.gz๋กœ ์••์ถ• > tar -zcvf 'ํŒŒ์ผ๋ช….tar.gz' 'ํด๋”๊ฒฝ๋กœ' 4. tar.gz ์••์ถ• ํ•ด์ œ > tar -zxvf 'ํŒŒ์ผ๋ช….tar.gz'

Code/Linux 2022.11.03

[Python] list ํ•ฉ์ง‘ํ•ฉ, ๊ต์ง‘ํ•ฉ, ์ฐจ์ง‘ํ•ฉ, ๋Œ€์นญ์ฐจ์ง‘ํ•ฉ

๋ฐ์ดํ„ฐ ์›์†Œ li1 = ['A', 'B', 'C', 'D'] li2 = ['C', 'D', 'E', 'F'] 1) ํ•ฉ์ง‘ํ•ฉ union = list(set(li1 + li2)) print(union) union1 = list(set(li1) | set(li2)) print(union1) union2 = list(set().union(li1, li2)) print(union2) 2) ๊ต์ง‘ํ•ฉ inter = list(set(li1) & set(li2)) print(inter) inter1= list(set(li1).intersection(li2)) print(inter1) 3) ์ฐจ์ง‘ํ•ฉ comp = list(set(li1) - set(li2)) print(comp) comp1 = list(set(li1).diffe..

Code/Python 2022.11.03

[Python]DataFrame ์ •๋ ฌ, sort_values() / sort_index(), ๋‹ค์ค‘ ์ •๋ ฌ

DataFrame์„ Data ๊ธฐ์ค€์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. - sort_values() titanic ๋ฐ์ดํ„ฐ๋ฅผ load ํ•ด์ค๋‹ˆ๋‹ค. import pandas as pd # data load df = pd.read_csv('train.csv') Pclass ๊ธฐ์ค€์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค. option์œผ๋กœ by๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ์ค€ ์ปฌ๋Ÿผ์„ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. df.sort_values(by = 'Pclass') Pclass ๊ธฐ์ค€์œผ๋กœ ์˜ค๋ฆ„์ฐจ์ˆœ ์ •๋ ฌ์ด ๋์Šต๋‹ˆ๋‹ค. Pclass ๊ธฐ์ค€์œผ๋กœ ๋‚ด๋ฆผ์ฐจ์ˆœ ์ •๋ ฌ์„ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ascending = False๋กœ ์„ค์ •ํ•˜์—ฌ ๋‚ด๋ฆผ์ฐจ์ˆœ์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. df.sort_values(by = 'Pclass', ascending = False) - ๋‹ค์ค‘ ์ •๋ ฌ by option์„ ํ†ตํ•ด ๋‹ค์ค‘ ์ •๋ ฌ๋„ ..

Code/Python 2022.11.02

[Python]numpy ๋ฐฐ์—ด ์ €์žฅ ๋ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ, Value Error ์ˆ˜์ •

1๊ฐœ์˜ ๋ฐฐ์—ด์„ binaryํ˜•ํƒœ๋กœ ์ €์žฅ import numpy as np li = ['a', 'b', 'c', 'd'] np.save('filename.npy', li) ์ €์žฅํ•œ ๋ฐฐ์—ด ๋ถˆ๋Ÿฌ์˜ค๊ธฐ li = np.load('filename.npy') ValueError: Object arrays cannot be loaded when allow_pickle=False๊ฐ€ ๋œฌ๋‹ค๋ฉด (allow_pickle = True) option์„ ๋„ฃ์œผ๋ฉด ํ•ด๊ฒฐ li = np.load('filename.npy', allow_pickle = True)

Code/Python 2022.11.01

[Machin Learning]๋ณ€์ˆ˜ ์ค‘์š”๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ Kfold ๊ต์ฐจ๊ฒ€์ฆ ์ง„ํ–‰ํ•˜๊ธฐ

๋ณ€์ˆ˜ ์ค‘์š”๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ณ€์ˆ˜๋ฅผ ํ•˜๋‚˜์”ฉ ๋Š˜๋ ค๊ฐ€๋ฉฐ Kfold ๊ต์ฐจ๊ฒ€์ฆ์„ ์ง„ํ–‰ํ•˜๋Š” ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. ๋ชจ๋“ˆ import ๋ฐ data load from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split, StratifiedKFold import pandas as pd # data load df = pd.read_csv('train.csv') trian set ์„ค์ • # object column ์ œ์™ธ df = df.select_dtypes(exclude= 'object') # Nan ๊ฐ’ ํ‰๊ท  ๊ฐ’์œผ๋กœ ์ฒ˜๋ฆฌ df.filln..

Machine Learning 2022.11.01

[Machine Learning]๋ณ€์ˆ˜ ์ค‘์š”๋„ ์ถœ๋ ฅ(feature importance)

ํ•™์Šต ๋ฐ์ดํ„ฐ ์ค‘ ๋ชจ๋“  ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋…ธ์ด์ฆˆ ๋ฐ์ดํ„ฐ๊ฐ€ ์„ž์—ฌ์„œ ๋ชจ๋ธ ์„ฑ๋Šฅ์ด ์ž˜ ๋‚˜์˜ค์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋ณ€์ˆ˜๋ฅผ ์„ ํƒํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์ณ์•ผ ํ•˜๋Š”๋ฐ, ๋ณ€์ˆ˜ ์ค‘์š”๋„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์„ ํƒํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค. RandomForest๋ฅผ ์ด์šฉํ•˜์—ฌ titanic๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•œ ํ›„ ๋ณ€์ˆ˜ ์ค‘์š”๋„๋ฅผ ์ถœ๋ ฅํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๋จผ์ €, titanic ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์™€์ค๋‹ˆ๋‹ค. import pandas as pd df = pd.read_csv('train.csv') df.head() RandomForest๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•™์Šต์„ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต์„ ์œ„ํ•ด object column์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. Nan ๊ฐ’์€ ํ‰๊ท ๊ฐ’์œผ๋กœ ์ฒ˜๋ฆฌํ•ด์ค๋‹ˆ๋‹ค. # object column ์ œ์™ธ df = df.select_dtypes(exclude= 'ob..

Machine Learning 2022.11.01

[Python]์ค‘๋ณต๊ฐ’ ํ™•์ธ(๋ฐ์ดํ„ฐ๊ฐ€ ๋™์ผํ•œ row, column ์ฐพ๊ธฐ)

- ๋™์ผํ•œ row ์ฐพ๊ธฐ row ๊ฐ™์€ ๊ฒฝ์šฐ์—๋Š” ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ค‘๋ณต๋œ row๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. df[df.duplicated()] *option์œผ๋กœ keep = ['first', 'last', 'False']๋ฅผ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. first: ์ค‘๋ณต๋œ row ์ค‘ ์ฒซ๋ฒˆ์งธ row๋ฅผ ๋‚จ๊น๋‹ˆ๋‹ค. last: ์ค‘๋ณต๋œ row ์ค‘ ๋งˆ์ง€๋ง‰ row๋ฅผ ๋‚จ๊น๋‹ˆ๋‹ค. False: ์ค‘๋ณต๋œ row ์ „์ฒด๋ฅผ ๋‚จ๊น๋‹ˆ๋‹ค. - ๋™์ผํ•œ column ์ฐพ๊ธฐ ํ•˜์ง€๋งŒ ๋™์ผํ•œ ๋ฐ์ดํ„ฐ ๊ฐ’์„ ๊ฐ€์ง„ ์ปฌ๋Ÿผ์„ ์ฐพ๋Š” ๊ฒƒ์€ ๋ณ„๋„๋กœ ํ•จ์ˆ˜๊ฐ€ ์—†๊ธฐ๋•Œ๋ฌธ์— ์ „์น˜๋ฅผ ํ•ด์ค€ ํ›„ DataFrame.duplicated() ํ†ตํ•ด ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. import pandas as pd import numpy as np # ์ „์น˜๋Š” .T ๋˜๋Š” np.transpose()๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด..

Code/Python 2022.10.31
728x90