728x90

์ „์ฒด ๊ธ€ 93

[Deep Learning] ์˜ค์ฐจ ์ˆ˜์ •ํ•˜๊ธฐ: ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•, ํŽธ๋ฏธ๋ถ„ ์ฝ”๋“œ ๊ตฌํ˜„

๊ธฐ์šธ๊ธฐ a๋ฅผ ๋„ˆ๋ฌด ํฌ๊ฒŒ ์žก๊ฑฐ๋‚˜ ๋„ˆ๋ฌด ์ž‘๊ฒŒ ์žก์œผ๋ฉด ์˜ค์ฐจ๊ฐ€ ์ปค์ง. ์˜ค์ฐจ์™€ ๊ธฐ์šธ๊ธฐ ์‚ฌ์ด์—๋Š” ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ์Œ. ์˜ค์ฐจ๊ฐ€ ๊ฐ€์žฅ ์ž‘์€ ์ ์€ ๊ธฐ์šธ๊ธฐ a๊ฐ€ m์— ์œ„์น˜ํ•ด ์žˆ์„๋•Œ ์ด๋ฏ€๋กœ, m์œผ๋กœ ์ด๋™์‹œํ‚ค๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•จ. ๋ฏธ๋ถ„ ๊ธฐ์šธ๊ธฐ๋ฅผ ์ด์šฉํ•œ ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•(gradient descent)๋ฅผ ํ†ตํ•ด ์˜ค์ฐจ๋ฅผ ๋น„๊ตํ•˜์—ฌ ๊ฐ€์žฅ ์ž‘์€ ๋ฐฉํ–ฅ์œผ๋กœ ์ด๋™์‹œ์ผœ์•ผํ•จ. ์ตœ์†Ÿ๊ฐ’ m์—์„œ์˜ ์ˆœ๊ฐ„ ๊ธฐ์šธ๊ธฐ๋Š” x์ถ•๊ณผ ํ‰ํ–‰ํ•œ ์„ , ์ฆ‰ ๊ธฐ์šธ๊ธฐ๊ฐ€ 0์ž„. - '๋ฏธ๋ถ„๊ฐ’์ด 0์ธ ์ง€์ '์„ ์ฐพ์•„ ์˜ค์ฐจ๋ฅผ ๊ฐ€์žฅ ์ ๊ฒŒ ๋งŒ๋“ค์–ด์•ผ ํ•จ. aโ‚์—์„œ ๋ฏธ๋ถ„์„ ๊ตฌํ•œ๋‹ค. ๊ตฌํ•ด์ง„ ๊ธฐ์šธ๊ธฐ์˜ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ(๊ธฐ์šธ๊ธฐ๊ฐ€ +๋ฉด ์Œ์˜ ๋ฐฉํ–ฅ, -๋ฉด ์–‘์˜ ๋ฐฉํ–ฅ)์œผ๋กœ ์–ผ๋งˆ๊ฐ„ ์ด๋™์‹œํ‚จ aโ‚‚์—์„œ ๋ฏธ๋ถ„์„ ๊ตฌํ•œ๋‹ค. ์œ„์—์„œ ๊ตฌํ•œ ๋ฏธ๋ถ„ ๊ฐ’์ด 0์ด ์•„๋‹ˆ๋ฉด ์œ„ ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•œ๋‹ค. ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์€ ์ด๋ ‡๊ฒŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ธฐ์šธ๊ธฐ a๋ฅผ ๋ณ€ํ™”์‹œ์ผœ์„œ..

Deep Learning 2022.11.22

[Algorithm] ๊ธฐ๋ณธ ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋ฐฐ์—ด_1

02 - 1 ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋ฐฐ์—ด ์‹ค์Šต 2-1 ํ•™์ƒ 5๋ช…์˜ ์‹œํ—˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ํ•ฉ๊ณ„์™€ ํ‰๊ท ์„ ์ถœ๋ ฅํ•˜๊ธฐ # ํ•™์ƒ 5๋ช…์˜ ์‹œํ—˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ํ•ฉ๊ณ„์™€ ํ‰๊ท ์„ ์ถœ๋ ฅํ•˜๊ธฐ print('ํ•™์ƒ ๊ทธ๋ฃน ์ ์ˆ˜์˜ ํ•ฉ๊ณ„์™€ ํ‰๊ท ์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.') score1 = int(input('1๋ฒˆ ํ•™์ƒ์˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.')) score2 = int(input('2๋ฒˆ ํ•™์ƒ์˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.')) score3 = int(input('3๋ฒˆ ํ•™์ƒ์˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.')) score4 = int(input('4๋ฒˆ ํ•™์ƒ์˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.')) score5 = int(input('5๋ฒˆ ํ•™์ƒ์˜ ์ ์ˆ˜๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.')) total = 0 total += score1 total += score2 total += score3 total += scor..

Code/Algorithm 2022.11.21

[Machine Learning] imblearn ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ undersampling

imblearn๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ under_sampling ๋น„๊ต - Import import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_classification from imblearn.under_sampling import * - Data ์ƒ์„ฑ X, y = make_classification(n_samples=5000, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=3, n_clusters_per_class=1, weights=[0.2, 0.3, 0.5], class_sep=0.8, rando..

Machine Learning 2022.11.21

[Algorithm] ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ์ดˆ_2

01 - 2 ๋ฐ˜๋ณตํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‹ค์Šต 1-7 1๋ถ€ํ„ฐ n๊นŒ์ง€ ์ •์ˆ˜์˜ ํ•ฉ ๊ตฌํ•˜๊ธฐ 1(while ๋ฌธ) # 1๋ถ€ํ„ฐ n๊นŒ์ง€ ์ •์ˆ˜์˜ ํ•ฉ ๊ตฌํ•˜๊ธฐ 1 (while ๋ฌธ) print('1๋ถ€ํ„ฐ n๊นŒ์ง€ ์ •์ˆ˜์˜ ํ•ฉ์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.') n = int(input('n๊ฐ’์„ ์ž…๋ ฅํ•˜์„ธ์š”.: ')) sum = 0 i = 1 while i b: a,b = b, a sum = 0 for i in range(a, b+1): sum += i print(f'{a}๋ถ€ํ„ฐ {b}๊นŒ์ง€ ์ •์ˆ˜์˜ ํ•ฉ์€ {sum}์ž…๋‹ˆ๋‹ค.') a๋ถ€ํ„ฐ b๊นŒ์ง€ ์ •์ˆ˜์˜ ํ•ฉ์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ •์ˆ˜ a๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.: 3 ์ •์ˆ˜ b๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.: 64 3๋ถ€ํ„ฐ 64๊นŒ์ง€ ์ •์ˆ˜์˜ ํ•ฉ์€ 2077์ž…๋‹ˆ๋‹ค. a์™€ b๋ฅผ ๊ตํ™˜ํ•  ๋•Œ a, b = b, a # a์™€ b์˜ ๊ฐ’์„ ๊ตํ™˜(๋‹จ์ผ ๋Œ€์ž…๋ฌธ ์‚ฌ์šฉ) ๋ฐ˜๋ณต ๊ณผ์ •์—์„œ ..

Code/Algorithm 2022.11.18

[Algorithm] ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ์ดˆ_1

01 - 1 ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ž€? ๋”๋ณด๊ธฐ ์–ด๋– ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ •ํ•ด ๋†“์€ ์ผ๋ จ์˜ ์ ˆ์ฐจ ํŠนํžˆ ์˜ฌ๋ฐ”๋ฅธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ž€ '์–ด๋– ํ•œ ๊ฒฝ์šฐ์—๋„ ์‹คํ–‰ ๊ฒฐ๊ณผ๊ฐ€ ๋˜‘๊ฐ™์ด ๋‚˜์˜ค๋Š” ๊ฒƒ'์„ ๋งํ•จ. ์‹ค์Šต 1-1 ์„ธ ์ •์ˆ˜์˜ ์ตœ๋Œ“๊ฐ’ ๊ตฌํ•˜๊ธฐ # ์„ธ ์ •์ˆ˜์˜ ์ตœ๋Œ“๊ฐ’ ๊ตฌํ•˜๊ธฐ print('์„ธ ์ •์ˆ˜์˜ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.') a = int(input('์ •์ˆ˜ a์˜ ๊ฐ’์„ ์ž…๋ ฅํ•˜์„ธ์š”.: ')) b = int(input('์ •์ˆ˜ b์˜ ๊ฐ’์„ ์ž…๋ ฅํ•˜์„ธ์š”.: ')) c = int(input('์ •์ˆ˜ c์˜ ๊ฐ’์„ ์ž…๋ ฅํ•˜์„ธ์š”.: ')) maximum = a if b > maximum: maximum = b if c > maximum: maximum = c print(f'์ตœ๋Œ€๊ฐ’์€ {maximum}์ž…๋‹ˆ๋‹ค.') ์„ธ ์ •์ˆ˜์˜ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ •์ˆ˜ a์˜ ๊ฐ’์„ ์ž…๋ ฅํ•˜์„ธ์š”.: 5..

Code/Algorithm 2022.11.18

[Machine Learning] imblearn ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ oversampling

imblearn๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ over_sampling ๋น„๊ต - Import import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_classification from imblearn.over_sampling import * - Data ์ƒ์„ฑ X, y = make_classification(n_samples=5000, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=3, n_clusters_per_class=1, weights=[0.01, 0.05, 0.94], class_sep=0.8, rand..

Machine Learning 2022.11.18

[Deep Learning] learning rate decay, learning rate scheduler

Learning Rate Decay ๊ธฐ์กด์˜ learning rate๊ฐ€ ๋†’์€ ๊ฒฝ์šฐ loss ๊ฐ’์„ ๋น ๋ฅด๊ฒŒ ๋‚ด๋ฆด ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ์˜ค์ฐจ๊ฐ€ 0์ธ ์ง€์ ์„ ๋ฒ—์–ด๋‚  ์ˆ˜ ์žˆ๊ณ , ๋‚ฎ์€ ๊ฒฝ์šฐ๋Š” ์ตœ์ ์˜ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ๋„ˆ๋ฌด ์˜ค๋žœ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ •์ ์ธ learning rate๋กœ ํ•™์Šต์„ ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, epoch๋งˆ๋‹ค ๋™์ ์œผ๋กœ learning rate๋ฅผ ๋ณ€ํ™”์‹œ์ผœ ์ตœ์ ์˜ ํ•™์Šต์„ ํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. tf.keras.optimizers.schedules.CosineDecay tf.keras.optimizers.schedules.CosineDecay( initial_learning_rate, decay_steps, alpha=0.0, name=None ) initial_learning_rate: ์ดˆ๊ธฐ lr decay_ste..

[Deep Learning]ํผ์…‰ํŠธ๋ก (Perceptron)

์‹ ๊ฒฝ๋ง์„ ์ด๋ฃจ๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ธฐ๋ณธ ๋‹จ์œ„: ํผ์…‰ํŠธ๋ก (perceptron) ํผ์…‰ํŠธ๋ก : ์ž…๋ ฅ ๊ฐ’๊ณผ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด ์ถœ๋ ฅ ๊ฐ’์„ ๋‹ค์Œ์œผ๋กœ ๋„˜๊ธฐ๋Š” ๊ฐ€์žฅ ์ž‘์€ ์‹ ๊ฒฝ๋ง ๋‹จ์œ„ ๊ฐ€์ค‘์น˜, ๊ฐ€์ค‘ํ•ฉ ๋ฐ”์ด์–ด์Šค, ํ™œ์„ฑํ™” ํ•จ์ˆ˜ y = ฯ‰x + b(ฯ‰๋Š” ๊ฐ€์ค‘์น˜, b๋Š” ๋ฐ”์ด์–ด์Šค) ๊ฐ€์ค‘ํ•ฉ(weighted sum): ์ž…๋ ฅ๊ฐ’(x)๊ณผ ๊ฐ€์ค‘์น˜(ฯ‰)์˜ ๊ณฒ์„ ๋ชจ๋‘ ๋”ํ•œ ๋‹ค์Œ ๊ฑฐ๊ธฐ์— ๋ฐ”์ด์–ด์Šค(b)๋ฅผ ๋”ํ•œ ๊ฐ’ ํ™œ์„ฑํ™”ํ•จ์ˆ˜(activation function): ๊ฐ€์ค‘ํ•ฉ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋†“๊ณ  1 ๋˜๋Š” 0์„ ํŒ๋‹จํ•˜๋Š” ํ•จ์ˆ˜ XOR ๋ฌธ์ œ(exclusive XOR) AND: xโ‚์™€ xโ‚‚ ๋‘˜ ๋‹ค 1์ผ ๋•Œ ๊ฒฐ๊ณผ๊ฐ’์ด 1๋กœ ์ถœ๋ ฅ OR: ๋‘˜ ์ค‘ ํ•˜๋‚˜๋ผ๋„ 1์ด๋ฉด 1๋กœ ์ถœ๋ ฅ XOR: ๋‘˜ ์ค‘ ํ•˜๋‚˜๋งŒ 1์ผ ๋•Œ 1๋กœ ์ถœ๋ ฅ ๋‹ค์ธต ํผ์…‰ํŠธ๋ก  XOR ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‘ ๊ฐœ์˜ ํผ์…‰ํŠธ..

Deep Learning 2022.11.16

[Deep Learning]overfitting, drop out, hyper-parameter ์ตœ์ ํ™”

๋ฐ”๋ฅธ ํ•™์Šต์„ ์œ„ํ•ด ๊ธฐ๊ณ„ ํ•™์Šต์—์„œ๋Š” ์˜ค๋ฒ„ํ”ผํŒ…์ด ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ์ผ์ด ๋งŽ์Œ. ์˜ค๋ฒ„ํ”ผํŒ…์ด๋ž€ ์‹ ๊ฒฝ๋ง์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—๋งŒ ์ง€๋‚˜์น˜๊ฒŒ ์ ์‘๋˜์–ด ๊ทธ ์™ธ์˜ ๋ฐ์ดํ„ฐ์—๋Š” ์ œ๋Œ€๋กœ ๋Œ€์‘๋˜์ง€ ๋ชปํ•˜๋Š” ์ƒํƒœ๋ฅผ ๋งํ•จ. ์˜ค๋ฒ„ํ”ผํŒ…์€ ์ฃผ๋กœ ๋‹ค์Œ์˜ ๋‘ ๊ฒฝ์šฐ์— ์ผ์–ด๋‚จ. 1. ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ๋งŽ๊ณ  ํ‘œํ˜„๋ ฅ์ด ๋†’์€ ๋ชจ๋ธ 2. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๊ฐ€ ์ ์Œ # ์˜ค๋ฒ„ํ”ผํŒ… ๊ฒฐ๊ณผ import os import sys sys.path.append(os.pardir) import numpy as np import matplotlib.pyplot as plt from mnist import load_mnist from common_multi_layer_net import MultiLayerNet from common_optimizer import SGD (x_train, t_tra..

Deep Learning 2022.11.13
728x90